Metamath Proof Explorer


Theorem ax6e2ndeqVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq is ax6e2ndeqVD without virtual deductions and was automatically derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. u =/= v ->. u =/= v ).
2:: |- (. u =/= v ,. ( x = u /\ y = v ) ->. ( x = u /\ y = v ) ).
3:2: |- (. u =/= v ,. ( x = u /\ y = v ) ->. x = u ).
4:1,3: |- (. u =/= v ,. ( x = u /\ y = v ) ->. x =/= v ).
5:2: |- (. u =/= v ,. ( x = u /\ y = v ) ->. y = v ).
6:4,5: |- (. u =/= v ,. ( x = u /\ y = v ) ->. x =/= y ).
7:: |- ( A. x x = y -> x = y )
8:7: |- ( -. x = y -> -. A. x x = y )
9:: |- ( -. x = y <-> x =/= y )
10:8,9: |- ( x =/= y -> -. A. x x = y )
11:6,10: |- (. u =/= v ,. ( x = u /\ y = v ) ->. -. A. x x = y ).
12:11: |- (. u =/= v ->. ( ( x = u /\ y = v ) -> -. A. x x = y ) ).
13:12: |- (. u =/= v ->. A. x ( ( x = u /\ y = v ) -> -. A. x x = y ) ).
14:13: |- (. u =/= v ->. ( E. x ( x = u /\ y = v ) -> E. x -. A. x x = y ) ).
15:: |- ( -. A. x x = y -> A. x -. A. x x = y )
19:15: |- ( E. x -. A. x x = y <-> -. A. x x = y )
20:14,19: |- (. u =/= v ->. ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) ).
21:20: |- (. u =/= v ->. A. y ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) ).
22:21: |- (. u =/= v ->. ( E. y E. x ( x = u /\ y = v ) -> E. y -. A. x x = y ) ).
23:: |- ( E. x E. y ( x = u /\ y = v ) <-> E. y E. x ( x = u /\ y = v ) )
24:22,23: |- (. u =/= v ->. ( E. x E. y ( x = u /\ y = v ) -> E. y -. A. x x = y ) ).
25:: |- ( -. A. x x = y -> A. y -. A. x x = y )
26:25: |- ( E. y -. A. x x = y -> E. y A. y -. A. x x = y )
260:: |- ( A. y -. A. x x = y -> A. y A. y -. A. x x = y )
27:260: |- ( E. y A. y -. A. x x = y <-> A. y -. A. x x = y )
270:26,27: |- ( E. y -. A. x x = y -> A. y -. A. x x = y )
28:: |- ( A. y -. A. x x = y -> -. A. x x = y )
29:270,28: |- ( E. y -. A. x x = y -> -. A. x x = y )
30:24,29: |- (. u =/= v ->. ( E. x E. y ( x = u /\ y = v ) -> -. A. x x = y ) ).
31:30: |- (. u =/= v ->. ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ).
32:31: |- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) )
33:: |- (. u = v ->. u = v ).
34:33: |- (. u = v ->. ( E. x E. y ( x = u /\ y = v ) -> u = v ) ).
35:34: |- (. u = v ->. ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ).
36:35: |- ( u = v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) )
37:: |- ( u = v \/ u =/= v )
38:32,36,37: |- ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) )
39:: |- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) )
40:: |- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) )
41:40: |- ( -. A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) )
42:: |- ( A. x x = y \/ -. A. x x = y )
43:39,41,42: |- ( u = v -> E. x E. y ( x = u /\ y = v ) )
44:40,43: |- ( ( -. A. x x = y \/ u = v ) -> E. x E. y ( x = u /\ y = v ) )
qed:38,44: |- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) )

Ref Expression
Assertion ax6e2ndeqVD ¬xx=yu=vxyx=uy=v

Proof

Step Hyp Ref Expression
1 ax6e2nd ¬xx=yxyx=uy=v
2 ax6e2eq xx=yu=vxyx=uy=v
3 1 a1d ¬xx=yu=vxyx=uy=v
4 exmid xx=y¬xx=y
5 jao xx=yu=vxyx=uy=v¬xx=yu=vxyx=uy=vxx=y¬xx=yu=vxyx=uy=v
6 2 3 4 5 e000 u=vxyx=uy=v
7 1 6 jaoi ¬xx=yu=vxyx=uy=v
8 idn1 uvuv
9 idn2 uv,x=uy=vx=uy=v
10 simpl x=uy=vx=u
11 9 10 e2 uv,x=uy=vx=u
12 neeq1 x=uxvuv
13 12 biimprcd uvx=uxv
14 8 11 13 e12 uv,x=uy=vxv
15 simpr x=uy=vy=v
16 9 15 e2 uv,x=uy=vy=v
17 neeq2 y=vxyxv
18 17 biimprcd xvy=vxy
19 14 16 18 e22 uv,x=uy=vxy
20 df-ne xy¬x=y
21 20 bicomi ¬x=yxy
22 sp xx=yx=y
23 22 con3i ¬x=y¬xx=y
24 21 23 sylbir xy¬xx=y
25 19 24 e2 uv,x=uy=v¬xx=y
26 25 in2 uvx=uy=v¬xx=y
27 26 gen11 uvxx=uy=v¬xx=y
28 exim xx=uy=v¬xx=yxx=uy=vx¬xx=y
29 27 28 e1a uvxx=uy=vx¬xx=y
30 nfnae x¬xx=y
31 30 19.9 x¬xx=y¬xx=y
32 imbi2 x¬xx=y¬xx=yxx=uy=vx¬xx=yxx=uy=v¬xx=y
33 32 biimpcd xx=uy=vx¬xx=yx¬xx=y¬xx=yxx=uy=v¬xx=y
34 29 31 33 e10 uvxx=uy=v¬xx=y
35 34 gen11 uvyxx=uy=v¬xx=y
36 exim yxx=uy=v¬xx=yyxx=uy=vy¬xx=y
37 35 36 e1a uvyxx=uy=vy¬xx=y
38 excom xyx=uy=vyxx=uy=v
39 imbi1 xyx=uy=vyxx=uy=vxyx=uy=vy¬xx=yyxx=uy=vy¬xx=y
40 39 biimprcd yxx=uy=vy¬xx=yxyx=uy=vyxx=uy=vxyx=uy=vy¬xx=y
41 37 38 40 e10 uvxyx=uy=vy¬xx=y
42 hbnae ¬xx=yy¬xx=y
43 42 eximi y¬xx=yyy¬xx=y
44 nfa1 yy¬xx=y
45 44 19.9 yy¬xx=yy¬xx=y
46 43 45 sylib y¬xx=yy¬xx=y
47 sp y¬xx=y¬xx=y
48 46 47 syl y¬xx=y¬xx=y
49 imim1 xyx=uy=vy¬xx=yy¬xx=y¬xx=yxyx=uy=v¬xx=y
50 41 48 49 e10 uvxyx=uy=v¬xx=y
51 orc ¬xx=y¬xx=yu=v
52 51 imim2i xyx=uy=v¬xx=yxyx=uy=v¬xx=yu=v
53 50 52 e1a uvxyx=uy=v¬xx=yu=v
54 53 in1 uvxyx=uy=v¬xx=yu=v
55 idn1 u=vu=v
56 ax-1 u=vxyx=uy=vu=v
57 55 56 e1a u=vxyx=uy=vu=v
58 olc u=v¬xx=yu=v
59 58 imim2i xyx=uy=vu=vxyx=uy=v¬xx=yu=v
60 57 59 e1a u=vxyx=uy=v¬xx=yu=v
61 60 in1 u=vxyx=uy=v¬xx=yu=v
62 exmidne u=vuv
63 jao u=vxyx=uy=v¬xx=yu=vuvxyx=uy=v¬xx=yu=vu=vuvxyx=uy=v¬xx=yu=v
64 63 com12 uvxyx=uy=v¬xx=yu=vu=vxyx=uy=v¬xx=yu=vu=vuvxyx=uy=v¬xx=yu=v
65 54 61 62 64 e000 xyx=uy=v¬xx=yu=v
66 7 65 impbii ¬xx=yu=vxyx=uy=v