Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axcc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | |
|
2 | nfcv | |
|
3 | fveqeq2 | |
|
4 | fveq2 | |
|
5 | 3 4 | ifbieq2d | |
6 | 1 2 5 | cbvmpt | |
7 | nfcv | |
|
8 | nfcv | |
|
9 | nffvmpt1 | |
|
10 | 8 9 | nfxp | |
11 | sneq | |
|
12 | fveq2 | |
|
13 | 11 12 | xpeq12d | |
14 | 7 10 13 | cbvmpt | |
15 | nfcv | |
|
16 | nfcv | |
|
17 | nfcv | |
|
18 | nffvmpt1 | |
|
19 | 17 18 | nffv | |
20 | 16 19 | nffv | |
21 | 2fveq3 | |
|
22 | 21 | fveq2d | |
23 | 15 20 22 | cbvmpt | |
24 | 6 14 23 | axcc2lem | |