Metamath Proof Explorer


Theorem axcc2

Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013)

Ref Expression
Assertion axcc2 ggFnωnωFngnFn

Proof

Step Hyp Ref Expression
1 nfcv _nifFm=Fm
2 nfcv _mifFn=Fn
3 fveqeq2 m=nFm=Fn=
4 fveq2 m=nFm=Fn
5 3 4 ifbieq2d m=nifFm=Fm=ifFn=Fn
6 1 2 5 cbvmpt mωifFm=Fm=nωifFn=Fn
7 nfcv _nm×mωifFm=Fmm
8 nfcv _mn
9 nffvmpt1 _mmωifFm=Fmn
10 8 9 nfxp _mn×mωifFm=Fmn
11 sneq m=nm=n
12 fveq2 m=nmωifFm=Fmm=mωifFm=Fmn
13 11 12 xpeq12d m=nm×mωifFm=Fmm=n×mωifFm=Fmn
14 7 10 13 cbvmpt mωm×mωifFm=Fmm=nωn×mωifFm=Fmn
15 nfcv _n2ndfmωm×mωifFm=Fmmm
16 nfcv _m2nd
17 nfcv _mf
18 nffvmpt1 _mmωm×mωifFm=Fmmn
19 17 18 nffv _mfmωm×mωifFm=Fmmn
20 16 19 nffv _m2ndfmωm×mωifFm=Fmmn
21 2fveq3 m=nfmωm×mωifFm=Fmmm=fmωm×mωifFm=Fmmn
22 21 fveq2d m=n2ndfmωm×mωifFm=Fmmm=2ndfmωm×mωifFm=Fmmn
23 15 20 22 cbvmpt mω2ndfmωm×mωifFm=Fmmm=nω2ndfmωm×mωifFm=Fmmn
24 6 14 23 axcc2lem ggFnωnωFngnFn