Metamath Proof Explorer


Theorem axdc4uz

Description: A version of axdc4 that works on an upper set of integers instead of _om . (Contributed by Mario Carneiro, 8-Jan-2014)

Ref Expression
Hypotheses axdc4uz.1 M
axdc4uz.2 Z=M
Assertion axdc4uz AVCAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk

Proof

Step Hyp Ref Expression
1 axdc4uz.1 M
2 axdc4uz.2 Z=M
3 eleq2 f=ACfCA
4 xpeq2 f=AZ×f=Z×A
5 pweq f=A𝒫f=𝒫A
6 5 difeq1d f=A𝒫f=𝒫A
7 4 6 feq23d f=AF:Z×f𝒫fF:Z×A𝒫A
8 3 7 anbi12d f=ACfF:Z×f𝒫fCAF:Z×A𝒫A
9 feq3 f=Ag:Zfg:ZA
10 9 3anbi1d f=Ag:ZfgM=CkZgk+1kFgkg:ZAgM=CkZgk+1kFgk
11 10 exbidv f=Agg:ZfgM=CkZgk+1kFgkgg:ZAgM=CkZgk+1kFgk
12 8 11 imbi12d f=ACfF:Z×f𝒫fgg:ZfgM=CkZgk+1kFgkCAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk
13 vex fV
14 eqid recyVy+1Mω=recyVy+1Mω
15 eqid nω,xfrecyVy+1MωnFx=nω,xfrecyVy+1MωnFx
16 1 2 13 14 15 axdc4uzlem CfF:Z×f𝒫fgg:ZfgM=CkZgk+1kFgk
17 12 16 vtoclg AVCAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk
18 17 3impib AVCAF:Z×A𝒫Agg:ZAgM=CkZgk+1kFgk