Metamath Proof Explorer


Theorem axpweq

Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow is not used by the proof. When ax-pow is assumed and A is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if A is a set (see pwexr ). (Contributed by NM, 22-Jun-2009)

Ref Expression
Assertion axpweq 𝒫AVxyzzyzAyx

Proof

Step Hyp Ref Expression
1 pwidg 𝒫AV𝒫A𝒫𝒫A
2 pweq x=𝒫A𝒫x=𝒫𝒫A
3 2 eleq2d x=𝒫A𝒫A𝒫x𝒫A𝒫𝒫A
4 3 spcegv 𝒫AV𝒫A𝒫𝒫Ax𝒫A𝒫x
5 1 4 mpd 𝒫AVx𝒫A𝒫x
6 elex 𝒫A𝒫x𝒫AV
7 6 exlimiv x𝒫A𝒫x𝒫AV
8 5 7 impbii 𝒫AVx𝒫A𝒫x
9 vex xV
10 9 elpw2 𝒫A𝒫x𝒫Ax
11 pwss 𝒫AxyyAyx
12 dfss2 yAzzyzA
13 12 imbi1i yAyxzzyzAyx
14 13 albii yyAyxyzzyzAyx
15 11 14 bitri 𝒫AxyzzyzAyx
16 10 15 bitri 𝒫A𝒫xyzzyzAyx
17 16 exbii x𝒫A𝒫xxyzzyzAyx
18 8 17 bitri 𝒫AVxyzzyzAyx