| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwidg | ⊢ ( 𝒫  𝐴  ∈  V  →  𝒫  𝐴  ∈  𝒫  𝒫  𝐴 ) | 
						
							| 2 |  | pweq | ⊢ ( 𝑥  =  𝒫  𝐴  →  𝒫  𝑥  =  𝒫  𝒫  𝐴 ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( 𝑥  =  𝒫  𝐴  →  ( 𝒫  𝐴  ∈  𝒫  𝑥  ↔  𝒫  𝐴  ∈  𝒫  𝒫  𝐴 ) ) | 
						
							| 4 | 3 | spcegv | ⊢ ( 𝒫  𝐴  ∈  V  →  ( 𝒫  𝐴  ∈  𝒫  𝒫  𝐴  →  ∃ 𝑥 𝒫  𝐴  ∈  𝒫  𝑥 ) ) | 
						
							| 5 | 1 4 | mpd | ⊢ ( 𝒫  𝐴  ∈  V  →  ∃ 𝑥 𝒫  𝐴  ∈  𝒫  𝑥 ) | 
						
							| 6 |  | elex | ⊢ ( 𝒫  𝐴  ∈  𝒫  𝑥  →  𝒫  𝐴  ∈  V ) | 
						
							| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 𝒫  𝐴  ∈  𝒫  𝑥  →  𝒫  𝐴  ∈  V ) | 
						
							| 8 | 5 7 | impbii | ⊢ ( 𝒫  𝐴  ∈  V  ↔  ∃ 𝑥 𝒫  𝐴  ∈  𝒫  𝑥 ) | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 9 | elpw2 | ⊢ ( 𝒫  𝐴  ∈  𝒫  𝑥  ↔  𝒫  𝐴  ⊆  𝑥 ) | 
						
							| 11 |  | pwss | ⊢ ( 𝒫  𝐴  ⊆  𝑥  ↔  ∀ 𝑦 ( 𝑦  ⊆  𝐴  →  𝑦  ∈  𝑥 ) ) | 
						
							| 12 |  | df-ss | ⊢ ( 𝑦  ⊆  𝐴  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 13 | 12 | imbi1i | ⊢ ( ( 𝑦  ⊆  𝐴  →  𝑦  ∈  𝑥 )  ↔  ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 14 | 13 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ⊆  𝐴  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦 ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 15 | 11 14 | bitri | ⊢ ( 𝒫  𝐴  ⊆  𝑥  ↔  ∀ 𝑦 ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 16 | 10 15 | bitri | ⊢ ( 𝒫  𝐴  ∈  𝒫  𝑥  ↔  ∀ 𝑦 ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 17 | 16 | exbii | ⊢ ( ∃ 𝑥 𝒫  𝐴  ∈  𝒫  𝑥  ↔  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 18 | 8 17 | bitri | ⊢ ( 𝒫  𝐴  ∈  V  ↔  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 )  →  𝑦  ∈  𝑥 ) ) |