Metamath Proof Explorer


Theorem axsegconlem6

Description: Lemma for axsegcon . Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013)

Ref Expression
Hypothesis axsegconlem2.1 S = p = 1 N A p B p 2
Assertion axsegconlem6 A 𝔼 N B 𝔼 N A B 0 < S

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S = p = 1 N A p B p 2
2 1 axsegconlem4 A 𝔼 N B 𝔼 N S
3 2 3adant3 A 𝔼 N B 𝔼 N A B S
4 1 axsegconlem5 A 𝔼 N B 𝔼 N 0 S
5 4 3adant3 A 𝔼 N B 𝔼 N A B 0 S
6 eqeelen A 𝔼 N B 𝔼 N A = B p = 1 N A p B p 2 = 0
7 1 eqeq1i S = 0 p = 1 N A p B p 2 = 0
8 6 7 bitr4di A 𝔼 N B 𝔼 N A = B S = 0
9 1 axsegconlem2 A 𝔼 N B 𝔼 N S
10 1 axsegconlem3 A 𝔼 N B 𝔼 N 0 S
11 sqrt00 S 0 S S = 0 S = 0
12 9 10 11 syl2anc A 𝔼 N B 𝔼 N S = 0 S = 0
13 8 12 bitr4d A 𝔼 N B 𝔼 N A = B S = 0
14 13 necon3bid A 𝔼 N B 𝔼 N A B S 0
15 14 biimp3a A 𝔼 N B 𝔼 N A B S 0
16 3 5 15 ne0gt0d A 𝔼 N B 𝔼 N A B 0 < S