Metamath Proof Explorer


Theorem axtglowdim2ALTV

Description: Alternate version of axtglowdim2 . (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.)

Ref Expression
Hypotheses istrkg2d.p P=BaseG
istrkg2d.d -˙=distG
istrkg2d.i I=ItvG
axtglowdim2ALTV.g φG𝒢Tarski2D
Assertion axtglowdim2ALTV φxPyPzP¬zxIyxzIyyxIz

Proof

Step Hyp Ref Expression
1 istrkg2d.p P=BaseG
2 istrkg2d.d -˙=distG
3 istrkg2d.i I=ItvG
4 axtglowdim2ALTV.g φG𝒢Tarski2D
5 1 2 3 istrkg2d G𝒢Tarski2DGVxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz
6 4 5 sylib φGVxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz
7 6 simprd φxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz
8 7 simpld φxPyPzP¬zxIyxzIyyxIz