Metamath Proof Explorer


Theorem ballotlemfelz

Description: ( FC ) has values in ZZ . (Contributed by Thierry Arnoux, 23-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotlemfval.c φCO
ballotlemfval.j φJ
Assertion ballotlemfelz φFCJ

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotlemfval.c φCO
7 ballotlemfval.j φJ
8 1 2 3 4 5 6 7 ballotlemfval φFCJ=1JC1JC
9 fzfi 1JFin
10 inss1 1JC1J
11 ssfi 1JFin1JC1J1JCFin
12 9 10 11 mp2an 1JCFin
13 hashcl 1JCFin1JC0
14 12 13 ax-mp 1JC0
15 14 nn0zi 1JC
16 difss 1JC1J
17 ssfi 1JFin1JC1J1JCFin
18 9 16 17 mp2an 1JCFin
19 hashcl 1JCFin1JC0
20 18 19 ax-mp 1JC0
21 20 nn0zi 1JC
22 zsubcl 1JC1JC1JC1JC
23 15 21 22 mp2an 1JC1JC
24 8 23 eqeltrdi φFCJ