| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|
| 2 |
|
ballotth.n |
|
| 3 |
|
ballotth.o |
|
| 4 |
|
ballotth.p |
|
| 5 |
|
ballotth.f |
|
| 6 |
|
ballotlemfp1.c |
|
| 7 |
|
ballotlemfp1.j |
|
| 8 |
7
|
nnzd |
|
| 9 |
1 2 3 4 5 6 8
|
ballotlemfval |
|
| 10 |
9
|
adantr |
|
| 11 |
|
fzfi |
|
| 12 |
|
inss1 |
|
| 13 |
|
ssfi |
|
| 14 |
11 12 13
|
mp2an |
|
| 15 |
|
hashcl |
|
| 16 |
14 15
|
ax-mp |
|
| 17 |
16
|
nn0cni |
|
| 18 |
17
|
a1i |
|
| 19 |
|
diffi |
|
| 20 |
11 19
|
ax-mp |
|
| 21 |
|
hashcl |
|
| 22 |
20 21
|
ax-mp |
|
| 23 |
22
|
nn0cni |
|
| 24 |
23
|
a1i |
|
| 25 |
|
1cnd |
|
| 26 |
18 24 25
|
subsub4d |
|
| 27 |
|
1zzd |
|
| 28 |
8 27
|
zsubcld |
|
| 29 |
1 2 3 4 5 6 28
|
ballotlemfval |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
oveq1d |
|
| 32 |
|
elnnuz |
|
| 33 |
7 32
|
sylib |
|
| 34 |
|
fzspl |
|
| 35 |
34
|
ineq1d |
|
| 36 |
|
indir |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
33 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
disjsn |
|
| 41 |
|
incom |
|
| 42 |
41
|
eqeq1i |
|
| 43 |
40 42
|
sylbb1 |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
uneq2d |
|
| 46 |
|
un0 |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
39 47
|
eqtrd |
|
| 49 |
48
|
fveq2d |
|
| 50 |
34
|
difeq1d |
|
| 51 |
|
difundir |
|
| 52 |
50 51
|
eqtrdi |
|
| 53 |
33 52
|
syl |
|
| 54 |
|
disj3 |
|
| 55 |
43 54
|
sylib |
|
| 56 |
55
|
eqcomd |
|
| 57 |
56
|
uneq2d |
|
| 58 |
53 57
|
sylan9eq |
|
| 59 |
58
|
fveq2d |
|
| 60 |
8
|
adantr |
|
| 61 |
|
uzid |
|
| 62 |
|
uznfz |
|
| 63 |
8 61 62
|
3syl |
|
| 64 |
63
|
adantr |
|
| 65 |
|
difss |
|
| 66 |
65
|
sseli |
|
| 67 |
64 66
|
nsyl |
|
| 68 |
|
ssfi |
|
| 69 |
11 65 68
|
mp2an |
|
| 70 |
67 69
|
jctil |
|
| 71 |
|
hashunsng |
|
| 72 |
60 70 71
|
sylc |
|
| 73 |
59 72
|
eqtrd |
|
| 74 |
49 73
|
oveq12d |
|
| 75 |
26 31 74
|
3eqtr4rd |
|
| 76 |
10 75
|
eqtrd |
|
| 77 |
76
|
ex |
|
| 78 |
9
|
adantr |
|
| 79 |
17
|
a1i |
|
| 80 |
|
1cnd |
|
| 81 |
23
|
a1i |
|
| 82 |
79 80 81
|
addsubd |
|
| 83 |
38
|
fveq2d |
|
| 84 |
83
|
adantr |
|
| 85 |
|
snssi |
|
| 86 |
|
dfss2 |
|
| 87 |
85 86
|
sylib |
|
| 88 |
87
|
uneq2d |
|
| 89 |
88
|
fveq2d |
|
| 90 |
89
|
adantl |
|
| 91 |
|
simpr |
|
| 92 |
8
|
adantr |
|
| 93 |
92 61 62
|
3syl |
|
| 94 |
12
|
sseli |
|
| 95 |
93 94
|
nsyl |
|
| 96 |
95 14
|
jctil |
|
| 97 |
|
hashunsng |
|
| 98 |
91 96 97
|
sylc |
|
| 99 |
84 90 98
|
3eqtrd |
|
| 100 |
53
|
fveq2d |
|
| 101 |
100
|
adantr |
|
| 102 |
|
difin2 |
|
| 103 |
|
difid |
|
| 104 |
103
|
ineq1i |
|
| 105 |
|
0in |
|
| 106 |
104 105
|
eqtri |
|
| 107 |
102 106
|
eqtrdi |
|
| 108 |
85 107
|
syl |
|
| 109 |
108
|
uneq2d |
|
| 110 |
109
|
fveq2d |
|
| 111 |
110
|
adantl |
|
| 112 |
|
un0 |
|
| 113 |
112
|
a1i |
|
| 114 |
113
|
fveq2d |
|
| 115 |
101 111 114
|
3eqtrd |
|
| 116 |
99 115
|
oveq12d |
|
| 117 |
29
|
adantr |
|
| 118 |
117
|
oveq1d |
|
| 119 |
82 116 118
|
3eqtr4d |
|
| 120 |
78 119
|
eqtrd |
|
| 121 |
120
|
ex |
|
| 122 |
77 121
|
jca |
|