Metamath Proof Explorer


Theorem ballotlemfp1

Description: If the J th ballot is for A, ( FC ) goes up 1. If the J th ballot is for B, ( FC ) goes down 1. (Contributed by Thierry Arnoux, 24-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotlemfp1.c φCO
ballotlemfp1.j φJ
Assertion ballotlemfp1 φ¬JCFCJ=FCJ11JCFCJ=FCJ1+1

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotlemfp1.c φCO
7 ballotlemfp1.j φJ
8 7 nnzd φJ
9 1 2 3 4 5 6 8 ballotlemfval φFCJ=1JC1JC
10 9 adantr φ¬JCFCJ=1JC1JC
11 fzfi 1J1Fin
12 inss1 1J1C1J1
13 ssfi 1J1Fin1J1C1J11J1CFin
14 11 12 13 mp2an 1J1CFin
15 hashcl 1J1CFin1J1C0
16 14 15 ax-mp 1J1C0
17 16 nn0cni 1J1C
18 17 a1i φ¬JC1J1C
19 diffi 1J1Fin1J1CFin
20 11 19 ax-mp 1J1CFin
21 hashcl 1J1CFin1J1C0
22 20 21 ax-mp 1J1C0
23 22 nn0cni 1J1C
24 23 a1i φ¬JC1J1C
25 1cnd φ¬JC1
26 18 24 25 subsub4d φ¬JC1J1C-1J1C-1=1J1C1J1C+1
27 1zzd φ1
28 8 27 zsubcld φJ1
29 1 2 3 4 5 6 28 ballotlemfval φFCJ1=1J1C1J1C
30 29 adantr φ¬JCFCJ1=1J1C1J1C
31 30 oveq1d φ¬JCFCJ11=1J1C-1J1C-1
32 elnnuz JJ1
33 7 32 sylib φJ1
34 fzspl J11J=1J1J
35 34 ineq1d J11JC=1J1JC
36 indir 1J1JC=1J1CJC
37 35 36 eqtrdi J11JC=1J1CJC
38 33 37 syl φ1JC=1J1CJC
39 38 adantr φ¬JC1JC=1J1CJC
40 disjsn CJ=¬JC
41 incom CJ=JC
42 41 eqeq1i CJ=JC=
43 40 42 sylbb1 ¬JCJC=
44 43 adantl φ¬JCJC=
45 44 uneq2d φ¬JC1J1CJC=1J1C
46 un0 1J1C=1J1C
47 45 46 eqtrdi φ¬JC1J1CJC=1J1C
48 39 47 eqtrd φ¬JC1JC=1J1C
49 48 fveq2d φ¬JC1JC=1J1C
50 34 difeq1d J11JC=1J1JC
51 difundir 1J1JC=1J1CJC
52 50 51 eqtrdi J11JC=1J1CJC
53 33 52 syl φ1JC=1J1CJC
54 disj3 JC=J=JC
55 43 54 sylib ¬JCJ=JC
56 55 eqcomd ¬JCJC=J
57 56 uneq2d ¬JC1J1CJC=1J1CJ
58 53 57 sylan9eq φ¬JC1JC=1J1CJ
59 58 fveq2d φ¬JC1JC=1J1CJ
60 8 adantr φ¬JCJ
61 uzid JJJ
62 uznfz JJ¬J1J1
63 8 61 62 3syl φ¬J1J1
64 63 adantr φ¬JC¬J1J1
65 difss 1J1C1J1
66 65 sseli J1J1CJ1J1
67 64 66 nsyl φ¬JC¬J1J1C
68 ssfi 1J1Fin1J1C1J11J1CFin
69 11 65 68 mp2an 1J1CFin
70 67 69 jctil φ¬JC1J1CFin¬J1J1C
71 hashunsng J1J1CFin¬J1J1C1J1CJ=1J1C+1
72 60 70 71 sylc φ¬JC1J1CJ=1J1C+1
73 59 72 eqtrd φ¬JC1JC=1J1C+1
74 49 73 oveq12d φ¬JC1JC1JC=1J1C1J1C+1
75 26 31 74 3eqtr4rd φ¬JC1JC1JC=FCJ11
76 10 75 eqtrd φ¬JCFCJ=FCJ11
77 76 ex φ¬JCFCJ=FCJ11
78 9 adantr φJCFCJ=1JC1JC
79 17 a1i φJC1J1C
80 1cnd φJC1
81 23 a1i φJC1J1C
82 79 80 81 addsubd φJC1J1C+1-1J1C=1J1C-1J1C+1
83 38 fveq2d φ1JC=1J1CJC
84 83 adantr φJC1JC=1J1CJC
85 snssi JCJC
86 df-ss JCJC=J
87 85 86 sylib JCJC=J
88 87 uneq2d JC1J1CJC=1J1CJ
89 88 fveq2d JC1J1CJC=1J1CJ
90 89 adantl φJC1J1CJC=1J1CJ
91 simpr φJCJC
92 8 adantr φJCJ
93 92 61 62 3syl φJC¬J1J1
94 12 sseli J1J1CJ1J1
95 93 94 nsyl φJC¬J1J1C
96 95 14 jctil φJC1J1CFin¬J1J1C
97 hashunsng JC1J1CFin¬J1J1C1J1CJ=1J1C+1
98 91 96 97 sylc φJC1J1CJ=1J1C+1
99 84 90 98 3eqtrd φJC1JC=1J1C+1
100 53 fveq2d φ1JC=1J1CJC
101 100 adantr φJC1JC=1J1CJC
102 difin2 JCJC=CCJ
103 difid CC=
104 103 ineq1i CCJ=J
105 0in J=
106 104 105 eqtri CCJ=
107 102 106 eqtrdi JCJC=
108 85 107 syl JCJC=
109 108 uneq2d JC1J1CJC=1J1C
110 109 fveq2d JC1J1CJC=1J1C
111 110 adantl φJC1J1CJC=1J1C
112 un0 1J1C=1J1C
113 112 a1i φJC1J1C=1J1C
114 113 fveq2d φJC1J1C=1J1C
115 101 111 114 3eqtrd φJC1JC=1J1C
116 99 115 oveq12d φJC1JC1JC=1J1C+1-1J1C
117 29 adantr φJCFCJ1=1J1C1J1C
118 117 oveq1d φJCFCJ1+1=1J1C-1J1C+1
119 82 116 118 3eqtr4d φJC1JC1JC=FCJ1+1
120 78 119 eqtrd φJCFCJ=FCJ1+1
121 120 ex φJCFCJ=FCJ1+1
122 77 121 jca φ¬JCFCJ=FCJ11JCFCJ=FCJ1+1