Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81. (Contributed by NM, 20-Jul-2006) (Proof shortened by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | basgen2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 | |
|
2 | ssexg | |
|
3 | 2 | ancoms | |
4 | eltg2b | |
|
5 | 3 4 | syl | |
6 | 5 | ralbidv | |
7 | 1 6 | bitrid | |
8 | 7 | biimp3ar | |
9 | basgen | |
|
10 | 8 9 | syld3an3 | |