Metamath Proof Explorer


Theorem basgen2

Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81. (Contributed by NM, 20-Jul-2006) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion basgen2 J Top B J x J y x z B y z z x topGen B = J

Proof

Step Hyp Ref Expression
1 dfss3 J topGen B x J x topGen B
2 ssexg B J J Top B V
3 2 ancoms J Top B J B V
4 eltg2b B V x topGen B y x z B y z z x
5 3 4 syl J Top B J x topGen B y x z B y z z x
6 5 ralbidv J Top B J x J x topGen B x J y x z B y z z x
7 1 6 syl5bb J Top B J J topGen B x J y x z B y z z x
8 7 biimp3ar J Top B J x J y x z B y z z x J topGen B
9 basgen J Top B J J topGen B topGen B = J
10 8 9 syld3an3 J Top B J x J y x z B y z z x topGen B = J