Metamath Proof Explorer


Theorem bcn0

Description: N choose 0 is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)

Ref Expression
Assertion bcn0 N0(N0)=1

Proof

Step Hyp Ref Expression
1 0elfz N000N
2 bcval2 00N(N0)=N!N0!0!
3 1 2 syl N0(N0)=N!N0!0!
4 nn0cn N0N
5 4 subid1d N0N0=N
6 5 fveq2d N0N0!=N!
7 fac0 0!=1
8 oveq12 N0!=N!0!=1N0!0!=N!1
9 6 7 8 sylancl N0N0!0!=N!1
10 faccl N0N!
11 10 nncnd N0N!
12 11 mulridd N0N!1=N!
13 9 12 eqtrd N0N0!0!=N!
14 13 oveq2d N0N!N0!0!=N!N!
15 facne0 N0N!0
16 11 15 dividd N0N!N!=1
17 14 16 eqtrd N0N!N0!0!=1
18 3 17 eqtrd N0(N0)=1