Metamath Proof Explorer


Theorem bdophmi

Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmophm.1 TBndLinOp
Assertion bdophmi AA·opTBndLinOp

Proof

Step Hyp Ref Expression
1 nmophm.1 TBndLinOp
2 bdopln TBndLinOpTLinOp
3 1 2 ax-mp TLinOp
4 3 lnopmi AA·opTLinOp
5 1 nmophmi AnormopA·opT=AnormopT
6 abscl AA
7 nmopre TBndLinOpnormopT
8 1 7 ax-mp normopT
9 remulcl AnormopTAnormopT
10 6 8 9 sylancl AAnormopT
11 5 10 eqeltrd AnormopA·opT
12 elbdop2 A·opTBndLinOpA·opTLinOpnormopA·opT
13 4 11 12 sylanbrc AA·opTBndLinOp