Metamath Proof Explorer


Theorem bits0o

Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bits0o N0bits2 N+1

Proof

Step Hyp Ref Expression
1 2z 2
2 dvdsmul1 2N22 N
3 1 2 mpan N22 N
4 1 a1i N2
5 id NN
6 4 5 zmulcld N2 N
7 2nn 2
8 7 a1i N2
9 1lt2 1<2
10 9 a1i N1<2
11 ndvdsp1 2 N21<222 N¬22 N+1
12 6 8 10 11 syl3anc N22 N¬22 N+1
13 3 12 mpd N¬22 N+1
14 6 peano2zd N2 N+1
15 bits0 2 N+10bits2 N+1¬22 N+1
16 14 15 syl N0bits2 N+1¬22 N+1
17 13 16 mpbird N0bits2 N+1