Metamath Proof Explorer


Theorem bitsf

Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsf bits:𝒫0

Proof

Step Hyp Ref Expression
1 df-bits bits=nk0|¬2n2k
2 nn0ex 0V
3 ssrab2 k0|¬2n2k0
4 2 3 elpwi2 k0|¬2n2k𝒫0
5 4 a1i nk0|¬2n2k𝒫0
6 1 5 fmpti bits:𝒫0