Metamath Proof Explorer


Theorem bitsinv

Description: The inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016)

Ref Expression
Hypothesis bitsinv.k K=bits0-1
Assertion bitsinv A𝒫0FinKA=kA2k

Proof

Step Hyp Ref Expression
1 bitsinv.k K=bits0-1
2 sumeq1 x=Akx2k=kA2k
3 bitsf1ocnv bits0:01-1 onto𝒫0Finbits0-1=x𝒫0Finkx2k
4 3 simpri bits0-1=x𝒫0Finkx2k
5 1 4 eqtri K=x𝒫0Finkx2k
6 sumex kA2kV
7 2 5 6 fvmpt A𝒫0FinKA=kA2k