Metamath Proof Explorer


Theorem bitsinv

Description: The inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016)

Ref Expression
Hypothesis bitsinv.k K = bits 0 -1
Assertion bitsinv A 𝒫 0 Fin K A = k A 2 k

Proof

Step Hyp Ref Expression
1 bitsinv.k K = bits 0 -1
2 sumeq1 x = A k x 2 k = k A 2 k
3 bitsf1ocnv bits 0 : 0 1-1 onto 𝒫 0 Fin bits 0 -1 = x 𝒫 0 Fin k x 2 k
4 3 simpri bits 0 -1 = x 𝒫 0 Fin k x 2 k
5 1 4 eqtri K = x 𝒫 0 Fin k x 2 k
6 sumex k A 2 k V
7 2 5 6 fvmpt A 𝒫 0 Fin K A = k A 2 k