Description: Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bitsinv.k | |
|
Assertion | bitsinvp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitsinv.k | |
|
2 | fzonel | |
|
3 | 2 | a1i | |
4 | disjsn | |
|
5 | 3 4 | sylibr | |
6 | 5 | ineq2d | |
7 | inindi | |
|
8 | in0 | |
|
9 | 6 7 8 | 3eqtr3g | |
10 | simpr | |
|
11 | nn0uz | |
|
12 | 10 11 | eleqtrdi | |
13 | fzosplitsn | |
|
14 | 12 13 | syl | |
15 | 14 | ineq2d | |
16 | indi | |
|
17 | 15 16 | eqtrdi | |
18 | fzofi | |
|
19 | 18 | a1i | |
20 | inss2 | |
|
21 | ssfi | |
|
22 | 19 20 21 | sylancl | |
23 | 2nn | |
|
24 | 23 | a1i | |
25 | inss1 | |
|
26 | simpl | |
|
27 | 25 26 | sstrid | |
28 | 27 | sselda | |
29 | 24 28 | nnexpcld | |
30 | 29 | nncnd | |
31 | 9 17 22 30 | fsumsplit | |
32 | elfpw | |
|
33 | 27 22 32 | sylanbrc | |
34 | 1 | bitsinv | |
35 | 33 34 | syl | |
36 | inss1 | |
|
37 | 36 26 | sstrid | |
38 | fzofi | |
|
39 | 38 | a1i | |
40 | inss2 | |
|
41 | ssfi | |
|
42 | 39 40 41 | sylancl | |
43 | elfpw | |
|
44 | 37 42 43 | sylanbrc | |
45 | 1 | bitsinv | |
46 | 44 45 | syl | |
47 | snssi | |
|
48 | 47 | adantl | |
49 | sseqin2 | |
|
50 | 48 49 | sylib | |
51 | 50 | sumeq1d | |
52 | simpr | |
|
53 | 23 | a1i | |
54 | simplr | |
|
55 | 53 54 | nnexpcld | |
56 | 55 | nncnd | |
57 | oveq2 | |
|
58 | 57 | sumsn | |
59 | 52 56 58 | syl2anc | |
60 | 51 59 | eqtr2d | |
61 | simpr | |
|
62 | disjsn | |
|
63 | 61 62 | sylibr | |
64 | 63 | sumeq1d | |
65 | sum0 | |
|
66 | 64 65 | eqtr2di | |
67 | 60 66 | ifeqda | |
68 | 46 67 | oveq12d | |
69 | 31 35 68 | 3eqtr4d | |