Metamath Proof Explorer


Theorem bitsp1e

Description: The M + 1 -th bit of 2 N is the M -th bit of N . (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsp1e NM0M+1bits2 NMbitsN

Proof

Step Hyp Ref Expression
1 2z 2
2 1 a1i N2
3 id NN
4 2 3 zmulcld N2 N
5 bitsp1 2 NM0M+1bits2 NMbits2 N2
6 4 5 sylan NM0M+1bits2 NMbits2 N2
7 zcn NN
8 2cnd N2
9 2ne0 20
10 9 a1i N20
11 7 8 10 divcan3d N2 N2=N
12 11 fveq2d N2 N2=N
13 flid NN=N
14 12 13 eqtrd N2 N2=N
15 14 adantr NM02 N2=N
16 15 fveq2d NM0bits2 N2=bitsN
17 16 eleq2d NM0Mbits2 N2MbitsN
18 6 17 bitrd NM0M+1bits2 NMbitsN