Metamath Proof Explorer


Theorem bj-0nelsngl

Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o ). (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-0nelsngl sngl A

Proof

Step Hyp Ref Expression
1 vex x V
2 1 snnz x
3 2 nesymi ¬ = x
4 3 nex ¬ x = x
5 bj-elsngl sngl A x A = x
6 rexex x A = x x = x
7 5 6 sylbi sngl A x = x
8 4 7 mto ¬ sngl A
9 8 nelir sngl A