Metamath Proof Explorer


Theorem bj-csbsn

Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-csbsn A / x x = A

Proof

Step Hyp Ref Expression
1 bj-csbsnlem y / x x = y
2 1 csbeq2i A / y y / x x = A / y y
3 csbcow A / y y / x x = A / x x
4 bj-csbsnlem A / y y = A
5 2 3 4 3eqtr3i A / x x = A