Metamath Proof Explorer


Theorem bj-eldiag

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag A V B Id A B A × A 1 st B = 2 nd B

Proof

Step Hyp Ref Expression
1 bj-diagval2 A V Id A = I A × A
2 1 eleq2d A V B Id A B I A × A
3 elin B I A × A B I B A × A
4 ancom B I B A × A B A × A B I
5 bj-elid4 B A × A B I 1 st B = 2 nd B
6 5 pm5.32i B A × A B I B A × A 1 st B = 2 nd B
7 3 4 6 3bitri B I A × A B A × A 1 st B = 2 nd B
8 2 7 bitrdi A V B Id A B A × A 1 st B = 2 nd B