| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-diagval2 |
|- ( A e. V -> ( _Id ` A ) = ( _I i^i ( A X. A ) ) ) |
| 2 |
1
|
eleq2d |
|- ( A e. V -> ( B e. ( _Id ` A ) <-> B e. ( _I i^i ( A X. A ) ) ) ) |
| 3 |
|
elin |
|- ( B e. ( _I i^i ( A X. A ) ) <-> ( B e. _I /\ B e. ( A X. A ) ) ) |
| 4 |
|
ancom |
|- ( ( B e. _I /\ B e. ( A X. A ) ) <-> ( B e. ( A X. A ) /\ B e. _I ) ) |
| 5 |
|
bj-elid4 |
|- ( B e. ( A X. A ) -> ( B e. _I <-> ( 1st ` B ) = ( 2nd ` B ) ) ) |
| 6 |
5
|
pm5.32i |
|- ( ( B e. ( A X. A ) /\ B e. _I ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) |
| 7 |
3 4 6
|
3bitri |
|- ( B e. ( _I i^i ( A X. A ) ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) |
| 8 |
2 7
|
bitrdi |
|- ( A e. V -> ( B e. ( _Id ` A ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) ) |