Metamath Proof Explorer


Theorem bj-eldiag

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag
|- ( A e. V -> ( B e. ( _Id ` A ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) )

Proof

Step Hyp Ref Expression
1 bj-diagval2
 |-  ( A e. V -> ( _Id ` A ) = ( _I i^i ( A X. A ) ) )
2 1 eleq2d
 |-  ( A e. V -> ( B e. ( _Id ` A ) <-> B e. ( _I i^i ( A X. A ) ) ) )
3 elin
 |-  ( B e. ( _I i^i ( A X. A ) ) <-> ( B e. _I /\ B e. ( A X. A ) ) )
4 ancom
 |-  ( ( B e. _I /\ B e. ( A X. A ) ) <-> ( B e. ( A X. A ) /\ B e. _I ) )
5 bj-elid4
 |-  ( B e. ( A X. A ) -> ( B e. _I <-> ( 1st ` B ) = ( 2nd ` B ) ) )
6 5 pm5.32i
 |-  ( ( B e. ( A X. A ) /\ B e. _I ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) )
7 3 4 6 3bitri
 |-  ( B e. ( _I i^i ( A X. A ) ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) )
8 2 7 bitrdi
 |-  ( A e. V -> ( B e. ( _Id ` A ) <-> ( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) )