Metamath Proof Explorer


Theorem bj-eldiag2

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag2
|- ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> ( B e. A /\ B = C ) ) )

Proof

Step Hyp Ref Expression
1 bj-diagval2
 |-  ( A e. V -> ( _Id ` A ) = ( _I i^i ( A X. A ) ) )
2 1 eleq2d
 |-  ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> <. B , C >. e. ( _I i^i ( A X. A ) ) ) )
3 elin
 |-  ( <. B , C >. e. ( _I i^i ( A X. A ) ) <-> ( <. B , C >. e. _I /\ <. B , C >. e. ( A X. A ) ) )
4 bj-opelidb1
 |-  ( <. B , C >. e. _I <-> ( B e. _V /\ B = C ) )
5 opelxp
 |-  ( <. B , C >. e. ( A X. A ) <-> ( B e. A /\ C e. A ) )
6 4 5 anbi12i
 |-  ( ( <. B , C >. e. _I /\ <. B , C >. e. ( A X. A ) ) <-> ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) )
7 simprl
 |-  ( ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) -> B e. A )
8 simplr
 |-  ( ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) -> B = C )
9 7 8 jca
 |-  ( ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) -> ( B e. A /\ B = C ) )
10 elex
 |-  ( B e. A -> B e. _V )
11 10 anim1i
 |-  ( ( B e. A /\ B = C ) -> ( B e. _V /\ B = C ) )
12 eleq1
 |-  ( B = C -> ( B e. A <-> C e. A ) )
13 12 biimpcd
 |-  ( B e. A -> ( B = C -> C e. A ) )
14 13 imdistani
 |-  ( ( B e. A /\ B = C ) -> ( B e. A /\ C e. A ) )
15 11 14 jca
 |-  ( ( B e. A /\ B = C ) -> ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) )
16 9 15 impbii
 |-  ( ( ( B e. _V /\ B = C ) /\ ( B e. A /\ C e. A ) ) <-> ( B e. A /\ B = C ) )
17 3 6 16 3bitri
 |-  ( <. B , C >. e. ( _I i^i ( A X. A ) ) <-> ( B e. A /\ B = C ) )
18 2 17 bitrdi
 |-  ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> ( B e. A /\ B = C ) ) )