Metamath Proof Explorer


Theorem bj-eldiag2

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag2 Could not format assertion : No typesetting found for |- ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> ( B e. A /\ B = C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-diagval2 Could not format ( A e. V -> ( _Id ` A ) = ( _I i^i ( A X. A ) ) ) : No typesetting found for |- ( A e. V -> ( _Id ` A ) = ( _I i^i ( A X. A ) ) ) with typecode |-
2 1 eleq2d Could not format ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> <. B , C >. e. ( _I i^i ( A X. A ) ) ) ) : No typesetting found for |- ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> <. B , C >. e. ( _I i^i ( A X. A ) ) ) ) with typecode |-
3 elin B C I A × A B C I B C A × A
4 bj-opelidb1 B C I B V B = C
5 opelxp B C A × A B A C A
6 4 5 anbi12i B C I B C A × A B V B = C B A C A
7 simprl B V B = C B A C A B A
8 simplr B V B = C B A C A B = C
9 7 8 jca B V B = C B A C A B A B = C
10 elex B A B V
11 10 anim1i B A B = C B V B = C
12 eleq1 B = C B A C A
13 12 biimpcd B A B = C C A
14 13 imdistani B A B = C B A C A
15 11 14 jca B A B = C B V B = C B A C A
16 9 15 impbii B V B = C B A C A B A B = C
17 3 6 16 3bitri B C I A × A B A B = C
18 2 17 bitrdi Could not format ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> ( B e. A /\ B = C ) ) ) : No typesetting found for |- ( A e. V -> ( <. B , C >. e. ( _Id ` A ) <-> ( B e. A /\ B = C ) ) ) with typecode |-