| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-diagval2 |
⊢ ( 𝐴 ∈ 𝑉 → ( Id ‘ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝐵 , 𝐶 〉 ∈ ( Id ‘ 𝐴 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 3 |
|
elin |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 〈 𝐵 , 𝐶 〉 ∈ I ∧ 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ) ) |
| 4 |
|
bj-opelidb1 |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ I ↔ ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ) |
| 5 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 6 |
4 5
|
anbi12i |
⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ I ∧ 〈 𝐵 , 𝐶 〉 ∈ ( 𝐴 × 𝐴 ) ) ↔ ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 7 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → 𝐵 = 𝐶 ) |
| 9 |
7 8
|
jca |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) ) |
| 10 |
|
elex |
⊢ ( 𝐵 ∈ 𝐴 → 𝐵 ∈ V ) |
| 11 |
10
|
anim1i |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝐵 = 𝐶 → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
| 13 |
12
|
biimpcd |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 = 𝐶 → 𝐶 ∈ 𝐴 ) ) |
| 14 |
13
|
imdistani |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) → ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) |
| 15 |
11 14
|
jca |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) → ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ) |
| 16 |
9 15
|
impbii |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) ) |
| 17 |
3 6 16
|
3bitri |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) ) |
| 18 |
2 17
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝐵 , 𝐶 〉 ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶 ) ) ) |