Metamath Proof Explorer


Theorem bj-eldiag2

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag2 ( 𝐴𝑉 → ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵𝐴𝐵 = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 bj-diagval2 ( 𝐴𝑉 → ( Id ‘ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) )
2 1 eleq2d ( 𝐴𝑉 → ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( Id ‘ 𝐴 ) ↔ ⟨ 𝐵 , 𝐶 ⟩ ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ) )
3 elin ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( ⟨ 𝐵 , 𝐶 ⟩ ∈ I ∧ ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) ) )
4 bj-opelidb1 ( ⟨ 𝐵 , 𝐶 ⟩ ∈ I ↔ ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) )
5 opelxp ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) ↔ ( 𝐵𝐴𝐶𝐴 ) )
6 4 5 anbi12i ( ( ⟨ 𝐵 , 𝐶 ⟩ ∈ I ∧ ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝐴 × 𝐴 ) ) ↔ ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) )
7 simprl ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) → 𝐵𝐴 )
8 simplr ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) → 𝐵 = 𝐶 )
9 7 8 jca ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) → ( 𝐵𝐴𝐵 = 𝐶 ) )
10 elex ( 𝐵𝐴𝐵 ∈ V )
11 10 anim1i ( ( 𝐵𝐴𝐵 = 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) )
12 eleq1 ( 𝐵 = 𝐶 → ( 𝐵𝐴𝐶𝐴 ) )
13 12 biimpcd ( 𝐵𝐴 → ( 𝐵 = 𝐶𝐶𝐴 ) )
14 13 imdistani ( ( 𝐵𝐴𝐵 = 𝐶 ) → ( 𝐵𝐴𝐶𝐴 ) )
15 11 14 jca ( ( 𝐵𝐴𝐵 = 𝐶 ) → ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) )
16 9 15 impbii ( ( ( 𝐵 ∈ V ∧ 𝐵 = 𝐶 ) ∧ ( 𝐵𝐴𝐶𝐴 ) ) ↔ ( 𝐵𝐴𝐵 = 𝐶 ) )
17 3 6 16 3bitri ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵𝐴𝐵 = 𝐶 ) )
18 2 17 bitrdi ( 𝐴𝑉 → ( ⟨ 𝐵 , 𝐶 ⟩ ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵𝐴𝐵 = 𝐶 ) ) )