Metamath Proof Explorer


Theorem bj-eldiag

Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 . (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-eldiag ( 𝐴𝑉 → ( 𝐵 ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st𝐵 ) = ( 2nd𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 bj-diagval2 ( 𝐴𝑉 → ( Id ‘ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) )
2 1 eleq2d ( 𝐴𝑉 → ( 𝐵 ∈ ( Id ‘ 𝐴 ) ↔ 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ) )
3 elin ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ I ∧ 𝐵 ∈ ( 𝐴 × 𝐴 ) ) )
4 ancom ( ( 𝐵 ∈ I ∧ 𝐵 ∈ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ 𝐵 ∈ I ) )
5 bj-elid4 ( 𝐵 ∈ ( 𝐴 × 𝐴 ) → ( 𝐵 ∈ I ↔ ( 1st𝐵 ) = ( 2nd𝐵 ) ) )
6 5 pm5.32i ( ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ 𝐵 ∈ I ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st𝐵 ) = ( 2nd𝐵 ) ) )
7 3 4 6 3bitri ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st𝐵 ) = ( 2nd𝐵 ) ) )
8 2 7 bitrdi ( 𝐴𝑉 → ( 𝐵 ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st𝐵 ) = ( 2nd𝐵 ) ) ) )