Step |
Hyp |
Ref |
Expression |
1 |
|
bj-diagval2 |
⊢ ( 𝐴 ∈ 𝑉 → ( Id ‘ 𝐴 ) = ( I ∩ ( 𝐴 × 𝐴 ) ) ) |
2 |
1
|
eleq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ ( Id ‘ 𝐴 ) ↔ 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ) ) |
3 |
|
elin |
⊢ ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ I ∧ 𝐵 ∈ ( 𝐴 × 𝐴 ) ) ) |
4 |
|
ancom |
⊢ ( ( 𝐵 ∈ I ∧ 𝐵 ∈ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ 𝐵 ∈ I ) ) |
5 |
|
bj-elid4 |
⊢ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) → ( 𝐵 ∈ I ↔ ( 1st ‘ 𝐵 ) = ( 2nd ‘ 𝐵 ) ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ 𝐵 ∈ I ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st ‘ 𝐵 ) = ( 2nd ‘ 𝐵 ) ) ) |
7 |
3 4 6
|
3bitri |
⊢ ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st ‘ 𝐵 ) = ( 2nd ‘ 𝐵 ) ) ) |
8 |
2 7
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∈ ( Id ‘ 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐴 × 𝐴 ) ∧ ( 1st ‘ 𝐵 ) = ( 2nd ‘ 𝐵 ) ) ) ) |