Metamath Proof Explorer


Theorem bj-fvmptunsn2

Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-fvmptunsn.un φF=xABCD
bj-fvmptunsn.nel φ¬CA
bj-fvmptunsn2.el φEA
bj-fvmptunsn2.ex φGV
bj-fvmptunsn2.is φx=EB=G
Assertion bj-fvmptunsn2 φFE=G

Proof

Step Hyp Ref Expression
1 bj-fvmptunsn.un φF=xABCD
2 bj-fvmptunsn.nel φ¬CA
3 bj-fvmptunsn2.el φEA
4 bj-fvmptunsn2.ex φGV
5 bj-fvmptunsn2.is φx=EB=G
6 nelneq EA¬CA¬E=C
7 3 2 6 syl2anc φ¬E=C
8 1 7 bj-fununsn1 φFE=xABE
9 eqidd φxAB=xAB
10 9 5 3 4 fvmptd φxABE=G
11 8 10 eqtrd φFE=G