Metamath Proof Explorer


Theorem bj-gabeqd

Description: Equality of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabeqd.nf φ x φ
bj-gabeqd.c φ A = B
bj-gabeqd.f φ ψ χ
Assertion bj-gabeqd φ A | x | ψ = B | x | χ

Proof

Step Hyp Ref Expression
1 bj-gabeqd.nf φ x φ
2 bj-gabeqd.c φ A = B
3 bj-gabeqd.f φ ψ χ
4 3 biimpd φ ψ χ
5 1 2 4 bj-gabssd φ A | x | ψ B | x | χ
6 2 eqcomd φ B = A
7 3 biimprd φ χ ψ
8 1 6 7 bj-gabssd φ B | x | χ A | x | ψ
9 5 8 eqssd φ A | x | ψ = B | x | χ