Metamath Proof Explorer


Theorem bj-iminvval2

Description: Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-iminvval2.exa φ A U
bj-iminvval2.exb φ B V
bj-iminvval2.arg φ R A × B
Assertion bj-iminvval2 Could not format assertion : No typesetting found for |- ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-iminvval2.exa φ A U
2 bj-iminvval2.exb φ B V
3 bj-iminvval2.arg φ R A × B
4 1 2 bj-iminvval Could not format ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) : No typesetting found for |- ( ph -> ( A ~P^* B ) = ( r e. ~P ( A X. B ) |-> { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' r " y ) ) } ) ) with typecode |-
5 simpr φ r = R r = R
6 5 cnveqd φ r = R r -1 = R -1
7 6 imaeq1d φ r = R r -1 y = R -1 y
8 7 eqeq2d φ r = R x = r -1 y x = R -1 y
9 8 anbi2d φ r = R x A y B x = r -1 y x A y B x = R -1 y
10 9 opabbidv φ r = R x y | x A y B x = r -1 y = x y | x A y B x = R -1 y
11 1 2 xpexd φ A × B V
12 11 3 sselpwd φ R 𝒫 A × B
13 1 2 bj-imdirval2lem φ x y | x A y B x = R -1 y V
14 4 10 12 13 fvmptd Could not format ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) : No typesetting found for |- ( ph -> ( ( A ~P^* B ) ` R ) = { <. x , y >. | ( ( x C_ A /\ y C_ B ) /\ x = ( `' R " y ) ) } ) with typecode |-