Metamath Proof Explorer


Theorem bj-ismoored

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1 φ A Moore _
bj-ismoored.2 φ B A
Assertion bj-ismoored φ A B A

Proof

Step Hyp Ref Expression
1 bj-ismoored.1 φ A Moore _
2 bj-ismoored.2 φ B A
3 inteq x = B x = B
4 3 ineq2d x = B A x = A B
5 4 eleq1d x = B A x A A B A
6 bj-ismoore A Moore _ x 𝒫 A A x A
7 1 6 sylib φ x 𝒫 A A x A
8 1 2 sselpwd φ B 𝒫 A
9 5 7 8 rspcdva φ A B A