Metamath Proof Explorer


Theorem bj-projeq

Description: Substitution property for Proj . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projeq A = C B = D A Proj B = C Proj D

Proof

Step Hyp Ref Expression
1 simpr A = C B = D B = D
2 simpl A = C B = D A = C
3 2 sneqd A = C B = D A = C
4 1 3 imaeq12d A = C B = D B A = D C
5 4 eleq2d A = C B = D x B A x D C
6 5 abbidv A = C B = D x | x B A = x | x D C
7 df-bj-proj A Proj B = x | x B A
8 df-bj-proj C Proj D = x | x D C
9 6 7 8 3eqtr4g A = C B = D A Proj B = C Proj D
10 9 ex A = C B = D A Proj B = C Proj D