Metamath Proof Explorer


Theorem bj-rabtr

Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019)

Ref Expression
Assertion bj-rabtr x A | = A

Proof

Step Hyp Ref Expression
1 ssrab2 x A | A
2 ssid A A
3 tru
4 3 rgenw x A
5 ssrab A x A | A A x A
6 2 4 5 mpbir2an A x A |
7 1 6 eqssi x A | = A