Metamath Proof Explorer
		
		
		
		Description:  Restricted class abstraction with true formula.  (Contributed by BJ, 22-Apr-2019)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | bj-rabtr |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 |  | 
						
							| 2 |  | ssid |  | 
						
							| 3 |  | tru |  | 
						
							| 4 | 3 | rgenw |  | 
						
							| 5 |  | ssrab |  | 
						
							| 6 | 2 4 5 | mpbir2an |  | 
						
							| 7 | 1 6 | eqssi |  |