Metamath Proof Explorer


Theorem bj-rexvw

Description: A weak version of rexv not using ax-ext (nor df-cleq , df-clel , df-v ), and only core FOL axioms. See also bj-ralvw . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexvw.1 ψ
Assertion bj-rexvw x y | ψ φ x φ

Proof

Step Hyp Ref Expression
1 bj-rexvw.1 ψ
2 df-rex x y | ψ φ x x y | ψ φ
3 1 vexw x y | ψ
4 3 biantrur φ x y | ψ φ
5 4 exbii x φ x x y | ψ φ
6 2 5 bitr4i x y | ψ φ x φ