Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snglex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset | |
|
2 | pweq | |
|
3 | 2 | eximi | |
4 | bj-snglss | |
|
5 | sseq2 | |
|
6 | 4 5 | mpbiri | |
7 | 6 | eximi | |
8 | vpwex | |
|
9 | 8 | ssex | |
10 | 9 | exlimiv | |
11 | 3 7 10 | 3syl | |
12 | 1 11 | sylbi | |
13 | bj-snglinv | |
|
14 | bj-snsetex | |
|
15 | 13 14 | eqeltrid | |
16 | 12 15 | impbii | |