Metamath Proof Explorer


Theorem bj-snglex

Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglex AVsnglAV

Proof

Step Hyp Ref Expression
1 isset AVxx=A
2 pweq x=A𝒫x=𝒫A
3 2 eximi xx=Ax𝒫x=𝒫A
4 bj-snglss snglA𝒫A
5 sseq2 𝒫x=𝒫AsnglA𝒫xsnglA𝒫A
6 4 5 mpbiri 𝒫x=𝒫AsnglA𝒫x
7 6 eximi x𝒫x=𝒫AxsnglA𝒫x
8 vpwex 𝒫xV
9 8 ssex snglA𝒫xsnglAV
10 9 exlimiv xsnglA𝒫xsnglAV
11 3 7 10 3syl xx=AsnglAV
12 1 11 sylbi AVsnglAV
13 bj-snglinv A=y|ysnglA
14 bj-snsetex snglAVy|ysnglAV
15 13 14 eqeltrid snglAVAV
16 12 15 impbii AVsnglAV