Metamath Proof Explorer


Theorem bj-subcom

Description: A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses bj-subcom.a φA
bj-subcom.b φB
Assertion bj-subcom φABBA=0

Proof

Step Hyp Ref Expression
1 bj-subcom.a φA
2 bj-subcom.b φB
3 1 2 mulcld φAB
4 1 2 mulcomd φAB=BA
5 3 4 subeq0bd φABBA=0