Metamath Proof Explorer


Theorem blrnps

Description: Membership in the range of the ball function. Note that ran ( ballD ) is the collection of all balls for metric D . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blrnps DPsMetXAranballDxXr*A=xballDr

Proof

Step Hyp Ref Expression
1 blfps DPsMetXballD:X×*𝒫X
2 ffn ballD:X×*𝒫XballDFnX×*
3 ovelrn ballDFnX×*AranballDxXr*A=xballDr
4 1 2 3 3syl DPsMetXAranballDxXr*A=xballDr