Metamath Proof Explorer


Theorem bndndx

Description: A bounded real sequence A ( k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008)

Ref Expression
Assertion bndndx xkAAxkAk

Proof

Step Hyp Ref Expression
1 arch xkx<k
2 nnre kk
3 lelttr AxkAxx<kA<k
4 ltle AkA<kAk
5 4 3adant2 AxkA<kAk
6 3 5 syld AxkAxx<kAk
7 6 exp5o AxkAxx<kAk
8 7 com3l xkAAxx<kAk
9 8 imp4b xkAAxx<kAk
10 9 com23 xkx<kAAxAk
11 2 10 sylan2 xkx<kAAxAk
12 11 reximdva xkx<kkAAxAk
13 1 12 mpd xkAAxAk
14 r19.35 kAAxAkkAAxkAk
15 13 14 sylib xkAAxkAk
16 15 rexlimiv xkAAxkAk