Metamath Proof Explorer


Theorem bnj229

Description: Technical lemma for bnj517 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj229.1 ψ i ω suc i N F suc i = y F i pred y A R
Assertion bnj229 n N suc m = n m ω ψ F n A

Proof

Step Hyp Ref Expression
1 bnj229.1 ψ i ω suc i N F suc i = y F i pred y A R
2 bnj213 pred y A R A
3 2 bnj226 y F m pred y A R A
4 1 bnj222 ψ m ω suc m N F suc m = y F m pred y A R
5 4 bnj228 m ω ψ suc m N F suc m = y F m pred y A R
6 5 adantl suc m = n m ω ψ suc m N F suc m = y F m pred y A R
7 eleq1 suc m = n suc m N n N
8 fveqeq2 suc m = n F suc m = y F m pred y A R F n = y F m pred y A R
9 7 8 imbi12d suc m = n suc m N F suc m = y F m pred y A R n N F n = y F m pred y A R
10 9 adantr suc m = n m ω ψ suc m N F suc m = y F m pred y A R n N F n = y F m pred y A R
11 6 10 mpbid suc m = n m ω ψ n N F n = y F m pred y A R
12 11 3impb suc m = n m ω ψ n N F n = y F m pred y A R
13 12 impcom n N suc m = n m ω ψ F n = y F m pred y A R
14 3 13 bnj1262 n N suc m = n m ω ψ F n A