Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj539.1 | |
|
bnj539.2 | No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |- | ||
bnj539.3 | |
||
Assertion | bnj539 | Could not format assertion : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj539.1 | |
|
2 | bnj539.2 | Could not format ( ps' <-> [. M / n ]. ps ) : No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |- | |
3 | bnj539.3 | |
|
4 | 1 | sbcbii | |
5 | 3 | bnj538 | |
6 | sbcimg | |
|
7 | 3 6 | ax-mp | |
8 | sbcel2gv | |
|
9 | 3 8 | ax-mp | |
10 | 3 | bnj525 | |
11 | 9 10 | imbi12i | |
12 | 7 11 | bitri | |
13 | 12 | ralbii | |
14 | 5 13 | bitri | |
15 | 4 14 | bitri | |
16 | 2 15 | bitri | Could not format ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. M -> ( F ` suc i ) = U_ y e. ( F ` i ) _pred ( y , A , R ) ) ) with typecode |- |