Metamath Proof Explorer


Theorem bnj893

Description: Property of _trCl . Under certain conditions, the transitive closure of X in A by R is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj893 RFrSeAXAtrClXARV

Proof

Step Hyp Ref Expression
1 biid f=predXARf=predXAR
2 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
3 eqid ω=ω
4 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
5 1 2 3 4 bnj882 trClXAR=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
6 vex gV
7 fveq1 f=gf=g
8 7 eqeq1d f=gf=predXARg=predXAR
9 6 8 sbcie [˙g/f]˙f=predXARg=predXAR
10 9 bicomi g=predXAR[˙g/f]˙f=predXAR
11 fveq1 f=gfsuci=gsuci
12 fveq1 f=gfi=gi
13 12 iuneq1d f=gyfipredyAR=ygipredyAR
14 11 13 eqeq12d f=gfsuci=yfipredyARgsuci=ygipredyAR
15 14 imbi2d f=gsucinfsuci=yfipredyARsucingsuci=ygipredyAR
16 15 ralbidv f=giωsucinfsuci=yfipredyARiωsucingsuci=ygipredyAR
17 6 16 sbcie [˙g/f]˙iωsucinfsuci=yfipredyARiωsucingsuci=ygipredyAR
18 17 bicomi iωsucingsuci=ygipredyAR[˙g/f]˙iωsucinfsuci=yfipredyAR
19 4 10 18 bnj873 f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=g|nωgFnng=predXARiωsucingsuci=ygipredyAR
20 19 eleq2i ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARfg|nωgFnng=predXARiωsucingsuci=ygipredyAR
21 20 anbi1i ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffifg|nωgFnng=predXARiωsucingsuci=ygipredyARwidomffi
22 21 rexbii2 ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffifg|nωgFnng=predXARiωsucingsuci=ygipredyARwidomffi
23 22 abbii w|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi=w|fg|nωgFnng=predXARiωsucingsuci=ygipredyARwidomffi
24 df-iun ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=w|ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARwidomffi
25 df-iun fg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffi=w|fg|nωgFnng=predXARiωsucingsuci=ygipredyARwidomffi
26 23 24 25 3eqtr4i ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi=fg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffi
27 biid g=predXARg=predXAR
28 biid iωsucingsuci=ygipredyARiωsucingsuci=ygipredyAR
29 eqid g|nωgFnng=predXARiωsucingsuci=ygipredyAR=g|nωgFnng=predXARiωsucingsuci=ygipredyAR
30 biid RFrSeAXAnωRFrSeAXAnω
31 biid gFnng=predXARiωsucingsuci=ygipredyARgFnng=predXARiωsucingsuci=ygipredyAR
32 biid [˙z/g]˙g=predXAR[˙z/g]˙g=predXAR
33 biid [˙z/g]˙iωsucingsuci=ygipredyAR[˙z/g]˙iωsucingsuci=ygipredyAR
34 biid [˙z/g]˙gFnng=predXARiωsucingsuci=ygipredyAR[˙z/g]˙gFnng=predXARiωsucingsuci=ygipredyAR
35 biid RFrSeAXARFrSeAXA
36 27 28 3 29 30 31 32 33 34 35 bnj849 RFrSeAXAg|nωgFnng=predXARiωsucingsuci=ygipredyARV
37 vex fV
38 37 dmex domfV
39 fvex fiV
40 38 39 iunex idomffiV
41 40 rgenw fg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffiV
42 iunexg g|nωgFnng=predXARiωsucingsuci=ygipredyARVfg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffiVfg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffiV
43 36 41 42 sylancl RFrSeAXAfg|nωgFnng=predXARiωsucingsuci=ygipredyARidomffiV
44 26 43 eqeltrid RFrSeAXAff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiV
45 5 44 eqeltrid RFrSeAXAtrClXARV