Metamath Proof Explorer


Theorem bnj900

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj900.3 D=ω
bnj900.4 B=f|nDfFnnφψ
Assertion bnj900 fBdomf

Proof

Step Hyp Ref Expression
1 bnj900.3 D=ω
2 bnj900.4 B=f|nDfFnnφψ
3 2 bnj1436 fBnDfFnnφψ
4 simp1 fFnnφψfFnn
5 4 reximi nDfFnnφψnDfFnn
6 fndm fFnndomf=n
7 6 reximi nDfFnnnDdomf=n
8 3 5 7 3syl fBnDdomf=n
9 8 bnj1196 fBnnDdomf=n
10 nfre1 nnDfFnnφψ
11 10 nfab _nf|nDfFnnφψ
12 2 11 nfcxfr _nB
13 12 nfcri nfB
14 13 19.37 nfBnDdomf=nfBnnDdomf=n
15 9 14 mpbir nfBnDdomf=n
16 nfv ndomf
17 13 16 nfim nfBdomf
18 1 bnj529 nDn
19 eleq2 domf=ndomfn
20 19 biimparc ndomf=ndomf
21 18 20 sylan nDdomf=ndomf
22 21 imim2i fBnDdomf=nfBdomf
23 17 22 exlimi nfBnDdomf=nfBdomf
24 15 23 ax-mp fBdomf