| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj900.3 |
|- D = ( _om \ { (/) } ) |
| 2 |
|
bnj900.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 3 |
2
|
bnj1436 |
|- ( f e. B -> E. n e. D ( f Fn n /\ ph /\ ps ) ) |
| 4 |
|
simp1 |
|- ( ( f Fn n /\ ph /\ ps ) -> f Fn n ) |
| 5 |
4
|
reximi |
|- ( E. n e. D ( f Fn n /\ ph /\ ps ) -> E. n e. D f Fn n ) |
| 6 |
|
fndm |
|- ( f Fn n -> dom f = n ) |
| 7 |
6
|
reximi |
|- ( E. n e. D f Fn n -> E. n e. D dom f = n ) |
| 8 |
3 5 7
|
3syl |
|- ( f e. B -> E. n e. D dom f = n ) |
| 9 |
8
|
bnj1196 |
|- ( f e. B -> E. n ( n e. D /\ dom f = n ) ) |
| 10 |
|
nfre1 |
|- F/ n E. n e. D ( f Fn n /\ ph /\ ps ) |
| 11 |
10
|
nfab |
|- F/_ n { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
| 12 |
2 11
|
nfcxfr |
|- F/_ n B |
| 13 |
12
|
nfcri |
|- F/ n f e. B |
| 14 |
13
|
19.37 |
|- ( E. n ( f e. B -> ( n e. D /\ dom f = n ) ) <-> ( f e. B -> E. n ( n e. D /\ dom f = n ) ) ) |
| 15 |
9 14
|
mpbir |
|- E. n ( f e. B -> ( n e. D /\ dom f = n ) ) |
| 16 |
|
nfv |
|- F/ n (/) e. dom f |
| 17 |
13 16
|
nfim |
|- F/ n ( f e. B -> (/) e. dom f ) |
| 18 |
1
|
bnj529 |
|- ( n e. D -> (/) e. n ) |
| 19 |
|
eleq2 |
|- ( dom f = n -> ( (/) e. dom f <-> (/) e. n ) ) |
| 20 |
19
|
biimparc |
|- ( ( (/) e. n /\ dom f = n ) -> (/) e. dom f ) |
| 21 |
18 20
|
sylan |
|- ( ( n e. D /\ dom f = n ) -> (/) e. dom f ) |
| 22 |
21
|
imim2i |
|- ( ( f e. B -> ( n e. D /\ dom f = n ) ) -> ( f e. B -> (/) e. dom f ) ) |
| 23 |
17 22
|
exlimi |
|- ( E. n ( f e. B -> ( n e. D /\ dom f = n ) ) -> ( f e. B -> (/) e. dom f ) ) |
| 24 |
15 23
|
ax-mp |
|- ( f e. B -> (/) e. dom f ) |