Metamath Proof Explorer


Theorem bnj917

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj917.1 φf=predXAR
bnj917.2 ψiωsucinfsuci=yfipredyAR
bnj917.3 D=ω
bnj917.4 B=f|nDfFnnφψ
bnj917.5 χnDfFnnφψ
Assertion bnj917 ytrClXARfniχinyfi

Proof

Step Hyp Ref Expression
1 bnj917.1 φf=predXAR
2 bnj917.2 ψiωsucinfsuci=yfipredyAR
3 bnj917.3 D=ω
4 bnj917.4 B=f|nDfFnnφψ
5 bnj917.5 χnDfFnnφψ
6 biid fFnnφψfFnnφψ
7 1 2 3 4 6 bnj916 ytrClXARfninDfFnnφψinyfi
8 bnj252 nDfFnnφψnDfFnnφψ
9 5 8 bitri χnDfFnnφψ
10 9 3anbi1i χinyfinDfFnnφψinyfi
11 bnj253 nDfFnnφψinyfinDfFnnφψinyfi
12 10 11 bitr4i χinyfinDfFnnφψinyfi
13 12 3exbii fniχinyfifninDfFnnφψinyfi
14 7 13 sylibr ytrClXARfniχinyfi