Metamath Proof Explorer


Theorem bnj986

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj986.3 χnDfFnnφψ
bnj986.10 D=ω
bnj986.15 τmωn=sucmp=sucn
Assertion bnj986 χmpτ

Proof

Step Hyp Ref Expression
1 bnj986.3 χnDfFnnφψ
2 bnj986.10 D=ω
3 bnj986.15 τmωn=sucmp=sucn
4 2 bnj158 nDmωn=sucm
5 1 4 bnj769 χmωn=sucm
6 5 bnj1196 χmmωn=sucm
7 vex nV
8 7 sucex sucnV
9 8 isseti pp=sucn
10 6 9 jctir χmmωn=sucmpp=sucn
11 exdistr mpmωn=sucmp=sucnmmωn=sucmpp=sucn
12 19.41v mmωn=sucmpp=sucnmmωn=sucmpp=sucn
13 11 12 bitr2i mmωn=sucmpp=sucnmpmωn=sucmp=sucn
14 10 13 sylib χmpmωn=sucmp=sucn
15 df-3an mωn=sucmp=sucnmωn=sucmp=sucn
16 3 15 bitri τmωn=sucmp=sucn
17 16 2exbii mpτmpmωn=sucmp=sucn
18 14 17 sylibr χmpτ