Metamath Proof Explorer


Theorem bpolydif

Description: Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014) (Proof shortened by Mario Carneiro, 26-May-2014)

Ref Expression
Assertion bpolydif NXNBernPolyX+1NBernPolyX=NXN1

Proof

Step Hyp Ref Expression
1 oveq1 n=knBernPolyX+1=kBernPolyX+1
2 oveq1 n=knBernPolyX=kBernPolyX
3 1 2 oveq12d n=knBernPolyX+1nBernPolyX=kBernPolyX+1kBernPolyX
4 id n=kn=k
5 oveq1 n=kn1=k1
6 5 oveq2d n=kXn1=Xk1
7 4 6 oveq12d n=knXn1=kXk1
8 3 7 eqeq12d n=knBernPolyX+1nBernPolyX=nXn1kBernPolyX+1kBernPolyX=kXk1
9 8 imbi2d n=kXnBernPolyX+1nBernPolyX=nXn1XkBernPolyX+1kBernPolyX=kXk1
10 oveq1 n=NnBernPolyX+1=NBernPolyX+1
11 oveq1 n=NnBernPolyX=NBernPolyX
12 10 11 oveq12d n=NnBernPolyX+1nBernPolyX=NBernPolyX+1NBernPolyX
13 id n=Nn=N
14 oveq1 n=Nn1=N1
15 14 oveq2d n=NXn1=XN1
16 13 15 oveq12d n=NnXn1=NXN1
17 12 16 eqeq12d n=NnBernPolyX+1nBernPolyX=nXn1NBernPolyX+1NBernPolyX=NXN1
18 17 imbi2d n=NXnBernPolyX+1nBernPolyX=nXn1XNBernPolyX+1NBernPolyX=NXN1
19 simp1 nk1n1XkBernPolyX+1kBernPolyX=kXk1Xn
20 simp3 nk1n1XkBernPolyX+1kBernPolyX=kXk1XX
21 simpl3 nk1n1XkBernPolyX+1kBernPolyX=kXk1Xm1n1X
22 oveq1 k=mkBernPolyX+1=mBernPolyX+1
23 oveq1 k=mkBernPolyX=mBernPolyX
24 22 23 oveq12d k=mkBernPolyX+1kBernPolyX=mBernPolyX+1mBernPolyX
25 id k=mk=m
26 oveq1 k=mk1=m1
27 26 oveq2d k=mXk1=Xm1
28 25 27 oveq12d k=mkXk1=mXm1
29 24 28 eqeq12d k=mkBernPolyX+1kBernPolyX=kXk1mBernPolyX+1mBernPolyX=mXm1
30 29 imbi2d k=mXkBernPolyX+1kBernPolyX=kXk1XmBernPolyX+1mBernPolyX=mXm1
31 30 rspccva k1n1XkBernPolyX+1kBernPolyX=kXk1m1n1XmBernPolyX+1mBernPolyX=mXm1
32 31 3ad2antl2 nk1n1XkBernPolyX+1kBernPolyX=kXk1Xm1n1XmBernPolyX+1mBernPolyX=mXm1
33 21 32 mpd nk1n1XkBernPolyX+1kBernPolyX=kXk1Xm1n1mBernPolyX+1mBernPolyX=mXm1
34 19 20 33 bpolydiflem nk1n1XkBernPolyX+1kBernPolyX=kXk1XnBernPolyX+1nBernPolyX=nXn1
35 34 3exp nk1n1XkBernPolyX+1kBernPolyX=kXk1XnBernPolyX+1nBernPolyX=nXn1
36 9 18 35 nnsinds NXNBernPolyX+1NBernPolyX=NXN1
37 36 imp NXNBernPolyX+1NBernPolyX=NXN1