Metamath Proof Explorer


Theorem br1cossres2

Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018)

Ref Expression
Assertion br1cossres2 B V C W B R A C x A B x R C x R

Proof

Step Hyp Ref Expression
1 br1cossres B V C W B R A C x A x R B x R C
2 exanres3 B V C W x A B x R C x R x A x R B x R C
3 1 2 bitr4d B V C W B R A C x A B x R C x R