Metamath Proof Explorer


Theorem br1cossxrnres

Description: <. B , C >. and <. D , E >. are cosets by an range Cartesian product with a restriction: a binary relation. (Contributed by Peter Mazsa, 8-Jun-2021)

Ref Expression
Assertion br1cossxrnres BVCWDXEYBCRSADEuAuSCuRBuSEuRD

Proof

Step Hyp Ref Expression
1 xrnres2 RSA=RSA
2 1 cosseqi RSA=RSA
3 2 breqi BCRSADEBCRSADE
4 opex BCV
5 opex DEV
6 br1cossres BCVDEVBCRSADEuAuRSBCuRSDE
7 4 5 6 mp2an BCRSADEuAuRSBCuRSDE
8 brxrn uVBVCWuRSBCuRBuSC
9 8 el3v1 BVCWuRSBCuRBuSC
10 brxrn uVDXEYuRSDEuRDuSE
11 10 el3v1 DXEYuRSDEuRDuSE
12 9 11 bi2anan9 BVCWDXEYuRSBCuRSDEuRBuSCuRDuSE
13 an2anr uRBuSCuRDuSEuSCuRBuSEuRD
14 12 13 bitrdi BVCWDXEYuRSBCuRSDEuSCuRBuSEuRD
15 14 rexbidv BVCWDXEYuAuRSBCuRSDEuAuSCuRBuSEuRD
16 7 15 bitrid BVCWDXEYBCRSADEuAuSCuRBuSEuRD
17 3 16 bitr3id BVCWDXEYBCRSADEuAuSCuRBuSEuRD