Metamath Proof Explorer


Theorem brcart

Description: Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brcart.1 AV
brcart.2 BV
brcart.3 CV
Assertion brcart AB𝖢𝖺𝗋𝗍CC=A×B

Proof

Step Hyp Ref Expression
1 brcart.1 AV
2 brcart.2 BV
3 brcart.3 CV
4 opex ABV
5 df-cart 𝖢𝖺𝗋𝗍=V×V×VranVEpprodEEV
6 1 2 opelvv ABV×V
7 brxp ABV×V×VCABV×VCV
8 6 3 7 mpbir2an ABV×V×VC
9 3anass x=yzyEAzEBx=yzyEAzEB
10 1 epeli yEAyA
11 2 epeli zEBzB
12 10 11 anbi12i yEAzEByAzB
13 12 anbi2i x=yzyEAzEBx=yzyAzB
14 9 13 bitri x=yzyEAzEBx=yzyAzB
15 14 2exbii yzx=yzyEAzEByzx=yzyAzB
16 vex xV
17 16 1 2 brpprod3b xpprodEEAByzx=yzyEAzEB
18 elxp xA×Byzx=yzyAzB
19 15 17 18 3bitr4ri xA×BxpprodEEAB
20 4 3 5 8 19 brtxpsd3 AB𝖢𝖺𝗋𝗍CC=A×B