Metamath Proof Explorer


Theorem brcnvrabga

Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Hypotheses brrabga.1 x=Ay=Bz=Cφψ
brcnvrabga.2 R=yzx|φ-1
Assertion brcnvrabga AVBWCXARBCψ

Proof

Step Hyp Ref Expression
1 brrabga.1 x=Ay=Bz=Cφψ
2 brcnvrabga.2 R=yzx|φ-1
3 relcnv Relyzx|φ-1
4 2 releqi RelRRelyzx|φ-1
5 3 4 mpbir RelR
6 5 relbrcnv BCR-1AARBC
7 1 3coml y=Bz=Cx=Aφψ
8 2 cnveqi R-1=yzx|φ-1-1
9 reloprab Relyzx|φ
10 dfrel2 Relyzx|φyzx|φ-1-1=yzx|φ
11 9 10 mpbi yzx|φ-1-1=yzx|φ
12 8 11 eqtri R-1=yzx|φ
13 7 12 brrabga BWCXAVBCR-1Aψ
14 13 3comr AVBWCXBCR-1Aψ
15 6 14 bitr3id AVBWCXARBCψ