Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Cosets by ` R `
brcoss
Next ⟩
brcoss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
brcoss
Description:
A
and
B
are cosets by
R
: a binary relation.
(Contributed by
Peter Mazsa
, 27-Dec-2018)
Ref
Expression
Assertion
brcoss
⊢
A
∈
V
∧
B
∈
W
→
A
≀
R
B
↔
∃
u
u
R
A
∧
u
R
B
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
x
=
A
→
u
R
x
↔
u
R
A
2
breq2
⊢
y
=
B
→
u
R
y
↔
u
R
B
3
1
2
bi2anan9
⊢
x
=
A
∧
y
=
B
→
u
R
x
∧
u
R
y
↔
u
R
A
∧
u
R
B
4
3
exbidv
⊢
x
=
A
∧
y
=
B
→
∃
u
u
R
x
∧
u
R
y
↔
∃
u
u
R
A
∧
u
R
B
5
df-coss
⊢
≀
R
=
x
y
|
∃
u
u
R
x
∧
u
R
y
6
4
5
brabga
⊢
A
∈
V
∧
B
∈
W
→
A
≀
R
B
↔
∃
u
u
R
A
∧
u
R
B