Metamath Proof Explorer


Theorem brcosscnv

Description: A and B are cosets by converse R : a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019)

Ref Expression
Assertion brcosscnv A V B W A R -1 B x A R x B R x

Proof

Step Hyp Ref Expression
1 brcoss A V B W A R -1 B x x R -1 A x R -1 B
2 brcnvg x V A V x R -1 A A R x
3 2 el2v1 A V x R -1 A A R x
4 brcnvg x V B W x R -1 B B R x
5 4 el2v1 B W x R -1 B B R x
6 3 5 bi2anan9 A V B W x R -1 A x R -1 B A R x B R x
7 6 exbidv A V B W x x R -1 A x R -1 B x A R x B R x
8 1 7 bitrd A V B W A R -1 B x A R x B R x